
4 J

F_

1992

NASA/ASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA

USING SOFTWARE METRICS AND SOFTWARE RELIABILITY MODELS

TO ATTAIN ACCEPTABLE QUALITY SOFTWARE FOR

FLIGHT AND GROUND SUPPORT SOFTWARE

FOR AVIONIC SYSTEMS

Prepared By:

Academic Rank:

Institution:

NASA/MSFC:

office:

Division:

Branch:

MSFC Colleague(s):

Stella Lawrence

Professor

Bronx Community College,

Department of Engineering Technologies

Information & Electronic Systems Lab.

Software & Data Management

Systems Software

Kenneth Williamson

Charles Cozelos

XXVI





This paper is concerned with methods of measuring and
developing quality software. Reliable flight and ground
support software is a highly important factor in the suc-
cessful operation of the space shuttle program. Reliability
is probably the most important of the characteristics inher-
ent in the concept of "software quality." It is the proba-
bility of failure free operation of a computer program for a
specified time and environment.

There has been an increased awareness in recent years of
the critical problems that have been encountered in the
development of large scale software systems. These problems
not only include the cost and schedule overruns typical of
development efforts, and the poor performance of the systems
once they are delivered, but also include the high cost to
maintain the systems, the lack of portability and the high
degree the systems can be sensitive requirement changes.

The efforts related to the development of a standard
programming language, and of software development tools and
aids, all provide partial solution to the above problems by
encouraging disciplined development of software and there-
fore a controlled development process.

Recently there has been a great deal of research in the
area of software metrics. A number of metrics which measure
various attributes of software and relate them to different
aspects of software quality have been developed and evaluat-
ed. The program manager responsible for the development of

the software can establish specific software product quality

goals and measure the progress towards these goals during

development. Metrics can also provide the means to assess

the difficulty in modifying a software product.

A validated metric is one whose values have been statis-

tically associated with corresponding quality factor values

or attributes of software that contribute to the quality of

the software. The critical value of a validated metric is

that value which is used to identify software which has

unacceptable quality. The major benefit of validation is

that it increases the probability that the metric will be a

good indicator of quality. The six criteria that a metric

must satisfy to be validated are associativity, consistency,

discriminative power, tracking, predictability and repeat-

ability.

The quality factor reliability has been associated with

various subfactors. These include completeness, accuracy,

consistency, error tolerance, simplicity, availability, non-

deficiency and anomaly management.

The measurement of software complexity is receiving

increased attention since software accounts for a growing

proportion of total computer system costs. Besides the

XXVI-I



above mentioned complexity measures, the following basic and

conceptually simple measures are also considered: the total

number of lines encountered in the main body of the program,

the number of lines of code, the total number of characters,

the number of code characters, then number of comments and

the number of comment characters in a program.

Parsers have been developed and used to compute the

various metrics for Pascal and Fortran programs, and recent-

ly for Ada programs. The Dynamics Research Corporation has

developed a Measurement and Analysis Tool called AdaMat.

AdaMat is a specific source code quality analysis tool. Its

metrics hierarchy is based on the RADC (Rome Air Development

Center) metrics framework. It measures adherence to over

240 quality principles which impact the reliability, main-

tainability and portability of Ada source code. Its princi-

ples are based on the most effective use of Ada language

features and adherence to long standing software engineering

principles. In the AdaMat system the quality factor, Reli-

ability, has two subfactors, Anomaly Management and Simplic-

ity. Anomaly Management has three subfactors: Prevention,

Detection and Recovery. Simplicity has three subfactors:

Coding Simplicity, Design Simplicity and Flow Simplicity.

AdaMat reports contain concise information on each metric's

level of adherence, the ranking option allows worst case Ada

units to be isolated rapidly, and AdaMat Documentation

clearly explains what is being counted by each metric. It

also explains why it is important to quality, provides a

suggested method of improvement and gives a source code

example of adherence to the metric principle and non-adher-

ence to the principle.

AdaMat provides a user friendly interface which makes

reporting simplified and straightforward, it provides main-

tenance cost savings resulting from the use of a disciplined

development process. In addition there are substantial early

error detection cost benefits. Lastly it provides an auto-

mated code review and inspection process. In particular,

formal source code inspections can use such a tool to locate

potential problem areas for the inspectors.

The second part of this project dealt with the develop-

ment and calibration of quantitative models for predicting

the quality of software. A software reliability model

specifies the general form of the dependence of the failure

process on the principal factors that affect it: fault

introduction, fault removal, and the environment. Software

reliability models are generally formulated in terms of

random processes. Analytic expressions can be derived for

the average number of failures experienced at any point in

time, the average number of failures in a time interval, the

failure intensity at any point in time, and the probability

distribution of failure interval models. A good software

reliability model gives good predictions of future failure

XXVI-2



behavior, estimates MTTF, estimates time to test completion,

is simple, widely applicable, and based on sound assump-

tions. Prediction of future failure behavior assumes that

the values of the model parameters will not change for the

period of prediction.

The models used in the present study consisted of:

I.SMERFS (Statistical Modeling and Estimation of Reliabili-

ty Functions for Software). There are ten models in SMERFS:

error count models (generalized Poisson model, NHPP model,

Brooks and Motley, Schneidewind model, S-shaped reliability

growth model) and time-between-error models (Littlewood and

Verrall Bayesian model, Musa execution time model, geometric

model, NHPP model for time between error occurrence, Musa

logarithmic Poisson execution time model).

2. Kenneth Williamson's NHPP Binomial type software reli-

ability model

3. Goel-Okumoto NHPP model.

The software utilized consisted of the IMCE (Image

Motion Compensation Electronics) software flight data, BATSE

(Burst Transient Source Experiment, Gamma Ray Observatory)

software, and a further program will also utilize POCC

(Payload Operations Control Center for the Space Shuttle),

Payload Checkout Unit Software for the Space Shuttle and

HIT's Software (Space Shuttle Telemetry Systems).

Before discussing the results obtained with the models

used in the present study, it must be kept in mind that

software reliability modeling is just one of many tools. It

cannot provide all the answers to the problems managers and

developers must face. It must be taken as a bit of informa-

tion, which along with others, is helpful in making a real-

istic judgment concerning a program's status.

For a first run, the results obtained in modeling the

cumulative number of failures versus execution time showed

fairly good results for the data. Plots of cumulative
software failures versus calendar weeks were made and the

model results were compared with the historical data on the

same graph. If the model agrees with actual historical

behavior for a set of data then there is confidence in

future predictions for this data.

Considering the quality of the data, the models have

given some significant results, even at this early stage.

With better care in data collection, data analysis, record-

ing of the fixing of failures and CPU execution times, the

models should prove valuable in making predictions regarding

the future pattern of failures, including an estimate of the

number of errors remaining in the software and the addition-

XXVI-3



al testing time required for the software failure rate to

reach a chosen target level. In addition, conditions occur-

ring during V&V are not always covered by the models. A

Center Director's Discretionary Fund proposal is planned to
address these conditions.

It appears that there is no one "best" model for all

cases. It is for this reason that the aim of this project
was to test several models. One of the recommendations

resulting from this study is that great care must be taken

in the collection of data. When using a model, the data

should satisfy the model assumptions.

As previously stated, the data has to have the ability

to correctly identify and measure what is desired. The data

provided must satisfy the following:

1. It should be correctly recorded.

2. It should consist of samples that are random in nature.

3. It should be stated in CPU hours between failures or

error counts per interval.

4. All error failure data should be accurate.

Reliability will improve if the field software is cor-

rected as failures occur. What about repeated failures due

to the same fault? Fixing of faults leading to failures has

to be properly recorded and properly attended to. The

record of failures must be obtained for a sufficient length

of time. Recent theory indicates that the failure intensity

function probably decreases exponentially with time, i.e. a

plot of the rate of occurrence of failures versus the number

of faults found decreased asymptotically to zero.

There are also several recommendations regarding the use

of the models:

i. The models require the insertion of various parameters.

The models should be run with various values of these param-

eters, which should be carefully chosen for optimum results.

2. The data should be modeled piecewise, in addition to

running the models for the total data.

3. Various forms of data input are provided including time

between failure data and error count data and the model may

yield different results for different types of data input.

4. The length of the trial should be a proportion of the

expected life of the system; predictions made from a very

small set of data tend to be poor.

XXVI-4



5. The rate of manifestation of errors varies greatly from
fault to fault, models which treat all faults as having the
same rate may lead to optimistic bias estimates. Perhaps
some type of analysis should be performed to classify fail-
ures by severity, what kind of failure is it and is it
critical or not?

To sum up the preliminary trials indicate that the
models tested show much promise and that with their proper
use and tailoring they are expected to yield an accurate
reliability prediction for the flight and supporting ground
software of embedded avionic systems.

REFERENCES

i. Musa, John S., Iannino, A., and Okumoto, Kazuhira, Soft-
ware Reliability Measurement, Prediction, Application,
McGraw-Hill Book Company, New York, 1987.

2. Schneidewind, Norman F., Validating Software Metrics
Naval Surface Warfare Center, Dahlgren, VA 22448, Sept.
1990.

3. Dynamics Research Corporation, AdaMat, Measurement and
Analysis Tool, 60 Frontage Road, Andover, MA 01810, Oct.
1991

4. Farr, William H., Strategic Systems Department, Naval
Systems Warfare Center, Dahlgren, VA 22448, Sponsored by
Strategic Systems Programs, Washington, DC 203765-5002,
Statistical Modeling and Estimation of Reliability Functions
for Software (SMERFS), Report No. NSWCTR 84-373, Revision
No. 2, March, 1991.

5. Williamson, Kenneth, Non-Homogeneous Poisson Process
Binomial Type Software Reliability Model, Preliminary Edi-
tion, EB41/Software & Data Management Division, EB42/Systems
Software Branch, Marshall Space Flight Center, Huntsville,
AL 35812, July, 1991.

XXVI-5




